Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Funct Integr Genomics ; 24(1): 30, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358412

RESUMO

LTBP1 is closely related to TGF-ß1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-ß and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Prognóstico , Transição Epitelial-Mesenquimal , Linhagem Celular , Metástase Linfática , Microambiente Tumoral , Proteínas de Ligação a TGF-beta Latente/genética
2.
Adv Mater ; : e2310789, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253339

RESUMO

Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-ß1) is bound. rLTBP1 facilitates the interaction of LAP with integrin ß1 and the subsequent mechanically driven release of TGF-ß1 to stimulate canonical TGF-ß1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo.

3.
J Proteome Res ; 23(2): 749-759, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266179

RESUMO

High-grade serous ovarian carcinoma (HGSC) is the most prevalent subtype of epithelial ovarian cancer. The combination of a high rate of recurrence and novel therapies in HGSC necessitates an accurate assessment of the disease. Currently, HGSC response to treatment and recurrence are monitored via immunoassay of serum levels of the glycoprotein CA125. CA125 levels predictably rise at HGSC recurrence; however, it is likely that the disease is progressing even before it is detectable through CA125. This may explain why treating solely based on CA125 increase has not been associated with improved outcomes. Thus, additional biomarkers that monitor HGSC progression and cancer recurrence are needed. For this purpose, we developed a scheduled parallel reaction monitoring mass spectrometry (PRM-MS) assay for the quantification of four previously identified HGSC-derived glycopeptides (from proteins FGL2, LGALS3BP, LTBP1, and TIMP1). We applied the assay to quantify their longitudinal expression profiles in 212 serum samples taken from 34 HGSC patients during disease progression. Analyses revealed that LTBP1 best-mirrored tumor load, dropping as a result of cancer treatment in 31 out of 34 patients and rising at HGSC recurrence in 28 patients. Additionally, LTBP1 rose earlier during remission than CA125 in 11 out of 25 platinum-sensitive patients with an average lead time of 116.4 days, making LTBP1 a promising candidate for monitoring of HGSC recurrence.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais , Cistadenocarcinoma Seroso/patologia , Recidiva Local de Neoplasia , Glicoproteínas , Espectrometria de Massas , Fibrinogênio , Proteínas de Ligação a TGF-beta Latente
4.
Biomedicines ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38137420

RESUMO

Dental pulp pericytes are reported to have the capacity to generate odontoblasts and express multiple cytokines and chemokines that regulate the local immune microenvironment, thus participating in the repair of dental pulp injury in vivo. However, it has not yet been reported whether the transplantation of exogenous pericytes can effectively treat pulpitis, and the underlying molecular mechanism remains unknown. In this study, using a lineage-tracing mouse model, we showed that most dental pulp pericytes are derived from cranial neural crest. Then, we demonstrated that the ablation of pericytes could induce a pulpitis-like phenotype in uninfected dental pulp in mice, and we showed that the significant loss of pericytes occurs during pupal inflammation, implying that the transplantation of pericytes may help to restore dental pulp homeostasis during pulpitis. Subsequently, we successfully generated pericytes with immunomodulatory activity from human pluripotent stem cells through the intermediate stage of the cranial neural crest with a high level of efficiency. Most strikingly, for the first time we showed that, compared with the untreated pulpitis group, the transplantation of hPSC-derived pericytes could substantially inhibit vascular permeability (the extravascular deposition of fibrinogen, ** p < 0.01), alleviate pulpal inflammation (TCR+ cell infiltration, * p < 0.05), and promote the regeneration of dentin (** p < 0.01) in the mouse model of pulpitis. In addition, we discovered that the knockdown of latent transforming growth factor beta binding protein 1 (LTBP1) remarkably suppressed the immunoregulation ability of pericytes in vitro and compromised their in vivo regenerative potential in pulpitis. These results indicate that the transplantation of pericytes could efficiently rescue the aberrant phenotype of pulpal inflammation, which may be partially due to LTBP1-mediated T cell suppression.

5.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894778

RESUMO

Dupuytren's disease (DD) is a fibroproliferative disorder affecting the palmar fascia, causing functional restrictions of the hand and thereby limiting patients' daily lives. The disturbed and excessive myofibroblastogenesis, causing DD, is mainly induced by transforming growth factor (TGF)-ß1. But, the extent to which impaired TGF-ß1 release or TGF-ß signal degradation is involved in pathologically altered myofibroblastogenesis in DD has been barely examined. Therefore, the complex in which TGF-ß1 is secreted in the extracellular matrix to elicit its biological activity, and proteins such as plasmin, integrins, and matrix metalloproteinases (MMPs), which are involved in the TGF-ß1 activation, were herein analyzed in DD-fibroblasts (DD-FBs). Additionally, TGF-ß signal degradation via caveolin-1 was examined with 5-fluoruracil (5-FU) in detail. Gene expression analysis was performed via Western blot, PCR, and immunofluorescence analyses. As a surrogate parameter for disturbed myofibroblastogenesis, 𝛼-smooth-muscle-actin (𝛼-SMA) expression was evaluated. It was demonstrated that latency-associated peptide (LAP)-TGF-ß and latent TGF-ß-binding protein (LTBP)-1 involved in TGF-ß-complex building were significantly upregulated in DD. Plasmin a serinprotease responsible for the TGF-ß release was significantly downregulated. The application of exogenous plasmin was able to inhibit disturbed myofibroblastogenesis, as measured via 𝛼-SMA expression. Furthermore, a reduced TGF-ß1 degradation was also involved in the pathological phenotype of DD, because caveolin-1 expression was significantly downregulated, and if rescued, myofibroblastogenesis was also inhibited. Therefore, our study demonstrates that a deficient release and degradation of TGF-ß1 are important players in the pathological phenotype of DD and should be addressed in future research studies to improve DD therapy or other related fibrotic conditions.


Assuntos
Contratura de Dupuytren , Humanos , Contratura de Dupuytren/genética , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Fibrinolisina/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas
6.
BMC Pulm Med ; 23(1): 300, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582718

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a pathophysiological syndrome, characterized by pulmonary vascular remodeling. Immunity and inflammation are progressively recognized properties of PAH, which are crucial for the initiation and maintenance of pulmonary vascular remodeling. This study explored immune cell infiltration characteristics and potential biomarkers of PAH using comprehensive bioinformatics analysis. METHODS: Microarray data of GSE117261, GSE113439 and GSE53408 datasets were downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified in GSE117261 dataset. The proportions of infiltrated immune cells were evaluated by CIBERSORT algorithm. Feature genes of PAH were selected by least absolute shrinkage and selection operator (LASSO) regression analysis and validated by fivefold cross-validation, random forest and logistic regression. The GSE113439 and GSE53408 datasets were used as validation sets and logistic regression and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prediction value of PAH. The PAH-associated module was identified by weighted gene association network analysis (WGCNA). The intersection of genes in the modules screened and DEGs was used to construct protein-protein interaction (PPI) network and the core genes were selected. After the intersection of feature genes and core genes, the hub genes were identified. The correlation between hub genes and immune cell infiltration was analyzed by Pearson correlation analysis. The expression level of LTBP1 in the lungs of monocrotaline-induced PAH rats was determined by Western blotting. The localization of LTBP1 and CD4 in lungs of PAH was assayed by immunofluorescence. RESULTS: A total of 419 DEGs were identified, including 223 upregulated genes and 196 downregulated genes. Functional enrichment analysis revealed that a significant enrichment in inflammation, immune response, and transforming growth factor ß (TGFß) signaling pathway. CIBERSORT analysis showed that ten significantly different types of immune cells were identified between PAH and control. Resting memory CD4+ T cells, CD8+ T cells, γδ T cells, M1 macrophages, and resting mast cells in the lungs of PAH patients were significantly higher than control. Seventeen feature genes were identified by LASSO regression for PAH prediction. WGCNA identified 15 co-expression modules. PPI network was constructed and 100 core genes were obtained. Complement C3b/C4b receptor 1 (CR1), thioredoxin reductase 1 (TXNRD1), latent TGFß binding protein 1 (LTBP1), and toll-like receptor 1 (TLR1) were identified as hub genes and LTBP1 has the highest diagnostic efficacy for PAH (AUC = 0.968). Pearson correlation analysis showed that LTBP1 was positively correlated with resting memory CD4+ T cells, but negatively correlated with monocytes and neutrophils. Western blotting showed that the protein level of LTBP1 was increased in the lungs of monocrotaline-induced PAH rats. Immunofluorescence of lung tissues from rats with PAH showed increased expression of LTBP1 in pulmonary arteries as compared to control and LTBP1 was partly colocalized with CD4+ cells in the lungs. CONCLUSION: LTBP1 was correlated with immune cell infiltration and identified as the critical diagnostic maker for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Animais , Ratos , Hipertensão Arterial Pulmonar/genética , Linfócitos T CD8-Positivos , Monocrotalina , Remodelação Vascular , Hipertensão Pulmonar Primária Familiar , Biologia Computacional , Fator de Crescimento Transformador beta
7.
Curr Pharm Biotechnol ; 24(2): 317-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35676846

RESUMO

OBJECTIVE: This study aimed at exploring the expression level of LTBP1 in the mouse model of epilepsy. The mechanism of LTBP1 in epileptic cerebral neural stem cells was deeply investigated to control the occurrence of epilepsy with neuroprotection. METHODS: qRT-PCR was conducted for the expression levels of LTBP1 in clinical human epileptic tissues and neural stem cells, as well as normal cerebral tissues and neural stem cells. The mouse model of postischemic stroke epilepsy (PSE) was established by the middle cerebral artery occlusion (MCAO). Then, qRT-PCR was conducted again for the expression levels of LTBP1 in mouse epileptic tissues and neural stem cells as well as normal cerebral tissues and neural stem cells. The activation and inhibitory vectors of LTBP1 were constructed to detect the effects of LTBP1 on the proliferation of cerebral neural stem cells in the PSE model combined with CCK-8. Finally, Western blot was conducted for the specific mechanism of LTBP1 affecting the development of epileptic cells. RESULTS: Racine score and epilepsy index of 15 mice showed epilepsy symptoms after the determination with MCAO, showing a successful establishment of the PSE model. LTBP1 expression in both diseased epileptic tissues and cells was higher than that in normal clinical epileptic tissues and cells. Meanwhile, qRT-PCR showed higher LTBP1 expression in both mouse epileptic tissues and their neural stem cells compared to that in normal tissues and cells. CCK-8 showed that the activation of LTBP1 stimulated the increased proliferative capacity of epileptic cells, while the inhibition of LTBP1 expression controlled the proliferation of epileptic cells. Western blot showed an elevated expression of TGFß/SMAD signaling pathway-associated protein SMAD1/5/8 after activating LTBP1. The expression of molecular MMP-13 associated with the occurrence of inflammation was also activated. CONCLUSION: LTBP1 can affect the changes in inflammation-related pathways by activating the TGFß/SMAD signaling pathway and stimulate the development of epilepsy, and the inhibition of LTBP1 expression can control the occurrence of epilepsy with neuroprotection.


Assuntos
Epilepsia , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Córtex Cerebral , Modelos Animais de Doenças , Epilepsia/genética , Expressão Gênica , Inflamação , Proteínas de Ligação a TGF-beta Latente , Neuroproteção , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Fator de Crescimento Transformador beta
8.
Matrix Biol ; 110: 60-75, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452817

RESUMO

LTBP1 is a large extracellular matrix protein and an associated ligand of fibrillin-microfibrils. Knowledge of LTBP1 functions is largely limited to its role in targeting and sequestering TGFß growth factors within the extracellular matrix, thereby regulating their bioavailability. However, the recent description of a wide spectrum of phenotypes in multiple tissues in patients harboring LTBP1 pathogenic variants suggests a multifaceted role of the protein in the homeostasis of connective tissues. To better understand the human pathology caused by LTBP1 deficiency it is important to investigate its functional role in extracellular matrix formation. In this study, we show that LTBP1 coordinates the incorporation of fibrillin-1 and -2 into the extracellular matrix in vitro. We also demonstrate that this function is differentially exerted by the two isoforms, the short and long forms of LTBP1. Thereby our findings uncover a novel TGFß-independent LTBP1 function potentially contributing to the development of connective tissue disorders.


Assuntos
Matriz Extracelular , Proteínas de Ligação a TGF-beta Latente , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-2/genética , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
Mol Cell Biochem ; 477(4): 1127-1138, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35076816

RESUMO

Although doxorubicin (DOX) is a broad-spectrum and anthracycline chemotherapeutic agent, cardiotoxicity limits its clinical application. Therefore, it is meant to prevent the clinical side effects of DOX. Human cardiomyocyte-like AC16 cells were treated with DOX to induce intracellular toxicity. AC16 cell viability was determined by Cell Counting Kit 8 and 5-ethynyl-2'-deoxyuridine assays. The tumor necrosis factor-α and interleukin-6 abundances were quantified by matched kits. The apoptosis rate was measured by flow cytometry. Western blot analysis was conducted to measure the protein expression levels in AC16 cells. Oxidative stress was analyzed by measuring superoxide dismutase and malondialdehyde production. The quantitative real-time polymerase chain reaction was conducted to assess the expression levels of circ-latent transforming growth factor-beta binding protein-1 (circ-LTBP1), microRNA-107 (miR-107), and Adenylate cyclase 1 (ADCY1) expression in AC16 cells. The interaction relationship among circ-LTBP1, miR-107, and ADCY1 was verified by dual-luciferase reporter and RNA immunoprecipitation assays. As a result, treatment with DOX induced the proliferation inhibition, inflammation, apoptosis, and oxidative stress in AC16 cells, which were rescued by circ-LTBP1 inhibition or miR-107 upregulation. MiR-107 was confirmed as a target of circ-LTBP1, and inhibition of circ-LTBP1-mediated effects on DOX-stimulated cells were abolished by downregulation of miR-107. Circ-LTBP1 mediated ADCY1 expression by sponging miR-107 in AC16 cells. The upregulation of miR-107 increased cell proliferation and inhibited inflammation, apoptosis, and oxidative stress in DOX-stimulated cells through downregulation of ADCY1. Circ-LTBP1 was found to enhance DOX-induced effects on proliferation inhibition, inflammation, apoptosis, and oxidative stress in AC16 cells through competitively sponging miR-107 and elevating ADCY1.


Assuntos
Adenilil Ciclases/metabolismo , Doxorrubicina/efeitos adversos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Circular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenilil Ciclases/genética , Linhagem Celular , Doxorrubicina/farmacologia , Humanos , MicroRNAs/genética , RNA Circular/genética , Transdução de Sinais/genética
10.
Braz. j. med. biol. res ; 55: e12206, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420741

RESUMO

Although metastasis is the major cause of death in cervical cancer, the mechanism of metastasis is still unclear. The mRNA expression and protein level of latent transforming growth factor beta binding protein 1 (LTBP1) were detected in tumor tissues and paracancerous tissues from in-house samples. Cell proliferation, cell cycle, migration, and in vivo metastasis were determined after LTBP1 was knocked down. Then, 13 drugs were screened, and the changes in cell apoptosis and proliferation and tumor metastasis were detected after drug treatment in shRNA cells. In our in-house samples, LTBP1 was lowly expressed in cervical cancer tissues. After LTBP1 knockdown, cell proliferation was increased, and the ability of in vitro migration and in vivo metastasis was enhanced. At the same time, the proportion of myeloid derived suppressor cells (MDSC) in situ increased, the proportion of T cells decreased, and transforming growth factor beta-1 (TGFβ1) signaling was activated. After carboplatin treatment, LTBP1 shRNA cell line apoptosis increased, metastasis in vivo was limited, and the proportion of MDSC in situ decreased. LTBP1 was lowly expressed in cervical cancer, and the inhibition of LTBP1 can improve the malignant degree of the tumor, and this process can be blocked by carboplatin.

11.
Exp Cell Res ; 407(1): 112790, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418460

RESUMO

BACKGROUND: Natural killer/T cell lymphoma (NKTCL) is a distinct subtype of Non-Hodgkin's lymphoma with highly aggressive clinical behavior. We aim to investigate the function of Latent transforming growth factor ß binding protein 1 (LTBP1) and transforming growth factor beta1 (TGF-ß1) and complex molecular pathogenesis of this disease. METHODS: NKTCL patients and reactive lymph nodes patients were recruited in this study. The expression of LTBP1 and TGF-ß1 was examined using qRT-PCR, Western blot, IHC and ELISA analyses in biopsied tissues and serum from participants and NKTCL cell lines. Cell proliferation was determined using CFSE. Cell cycle and apoptosis were evaluated using flow cytometric analyses. The expression of Ki-67, CDK4 and cyclinD1 proteins was measured using Western blot analyses. The roles of LTBP-1/TGF-ß1 in EMT program were determined by measuring E-cadherin, N-cadherin and Vimentin using Western blot analyses. The effects of LTBP-1 and TGF-ß1 on tumor progression in vivo were determined by animal experiments. RESULTS: LTBP-1 and TGF-ß1 levels were elevated in NKTCL tissues and serum. The expression of LTBP-1 was positively correlated with the expression of TGF-ß1 in NKTCL tissues. LTBP-1 was overexpressed in NKTCL cells. Knockdown of LTBP-1 suppressed cell proliferation and cell cycle progression, induced cell apoptosis, and suppressed EMT program in NKTCL cells. These effects of LTBP-1 knockdown were attenuated after TGF-ß1 stimulation. Knockdown of LTBP-1 inhibited NKTCL tumor weight and volume in vivo. Also, stimulation of TGF-ß1 attenuated the suppressive effects on tumor growth from sh-LTBP-1. Silencing of LTBP-1 lowered cellular TGF-ß1, phosphorylated-Smad2, phosphorlyatd-Smad3, and phosphorylated-p38 and the suppressive effects were reversed after stimulation of TGF-ß1. CONCLUSION: Our findings suggested that inhibition of LTBP-1/TGF-ß1 suppressed the malignant phenotypes of NKTCL cells and tumor growth via inactivating the canonical TGF-ß/Smad signaling and p38MAPK signaling.


Assuntos
Células Matadoras Naturais/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Linfoma de Células T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Vimentina/metabolismo
12.
Am J Hum Genet ; 108(6): 1095-1114, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991472

RESUMO

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFß in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFß growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFß levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.


Assuntos
Colágeno/metabolismo , Cútis Laxa/etiologia , Variação Genética , Proteínas de Ligação a TGF-beta Latente/genética , Adolescente , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Cútis Laxa/patologia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Linhagem , Pele/metabolismo , Pele/patologia , Peixe-Zebra
13.
Semin Cell Dev Biol ; 114: 83-92, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33472760

RESUMO

Embryonic mammary gland development involves the formation of mammary placodes, invagination of flask-shaped mammary buds and development of miniature bi-layered ductal trees. Currently there is a good understanding of the factors that contribute to ectodermal cell movements to create these appendages and of pathways that lead to mammary specification and commitment. Gene expression profiles of early bipotent mammary stem cells populations as well as cell surface proteins and transcription factors that promote the emergence of unipotent progenitors have been identified. Analyses of these populations has illuminated not only embryonic mammary development, but highlighted parallel processes in breast cancer. Here we provide an overview of the highly conserved pathways that shape the embryonic mammary gland. Understanding the dynamic signaling events that occur during normal mammary development holds considerable promise to advance attempts to eliminate cancer by restoring differentiative signals.


Assuntos
Glândulas Mamárias Animais , Glândulas Mamárias Humanas/embriologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Feminino , Humanos , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos
14.
Anim Biotechnol ; 32(2): 194-204, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31625451

RESUMO

TGF-ß signaling pathway plays an important role in regulating cell proliferation and differentiation, embryonic development, bone formation, etc. LTBP1, THBS1, SMAD4 and other genes are important members of TGF-ß signaling pathway. LTBP1 binds to TGF-ß, while THBS1 binds to LTBP1, which is an important signal transduction molecule in the TGF-ß pathway. In order to explore the effects of the insertion/deletion variation of three genes (LTBP1, THBS1, SMAD4) in the TGF-ß signaling pathway on the growth traits such as body length and body weight of sheep, a total of 625 healthy individuals from 4 breeds of the Tong sheep, Hu sheep, small-tail Han sheep and Lanzhou fat-tail sheep were identified and analyzed. In this study, we identified 4 InDel loci: one loci of LTBP1, two loci of THBS1, and one loci of SMAD4, respectively named as: InDel-1 (deletion 13 bp), InDel-2 (deletion 16 bp), InDel-3 (deletion 22 bp), InDel-4 (deletion 7 bp). Among the 4 analyzed breeds, association analysis showed that all new InDel polymorphisms were significantly associated with 10 different growth traits (p < 0.05), which may provide a theoretical basis for sheep breeding to accelerate the progression of marker-assisted selection in sheep breeding.


Assuntos
Ovinos/crescimento & desenvolvimento , Ovinos/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Animais , Genótipo , Mutação INDEL , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais/fisiologia , Proteína Smad4/genética , Proteína Smad4/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo
15.
Cancer Sci ; 111(12): 4616-4628, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33007133

RESUMO

Stromal invasion is considered an important prognostic factor in patients with lung adenocarcinoma. The mechanisms underlying the formation of tumor stroma and stromal invasion have been studied in the lung; however, they are still unclear. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein highly expressed in several types of human malignant tumors including lung cancers. In this study, we investigated the in vivo functions of CD109 protein in malignant lung tumors. Initially, we identified an association between higher expression of CD109 protein in human lung adenocarcinoma and a significantly worse prognosis, according to immunohistochemical analysis. We also showed that CD109 deficiency significantly reduced the area of stromal invasive lesions in a genetically engineered CD109-deficient lung adenocarcinoma mouse model, which correlated with the results observed in human lung adenocarcinoma. Furthermore, we identified latent TGF-ß binding protein-1 (LTBP1) as a CD109-interacting protein using mass spectrometry and confirmed their interaction by co-immunoprecipitation. Importantly, increased CD109 expression enhanced stromal TGF-ß activation in the presence of LTBP1. Therefore, these data suggest the significance of the regulation of TGF-ß signaling through CD109 and LTBP1 interaction in tumor stroma and also reveal the importance of CD109 expression levels in promoting lung cancer cell proliferation, migration, and invasion, and thus predicting the outcome of patients suffering from lung adenocarcinoma. Therefore, CD109 protein could be a potential therapeutic target for this disease.


Assuntos
Adenocarcinoma/metabolismo , Antígenos CD/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma/patologia , Idoso , Animais , Antígenos CD/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Proteínas de Ligação a TGF-beta Latente/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Prognóstico , RNA Interferente Pequeno , Transfecção
16.
J Transl Med ; 18(1): 139, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216815

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide. Due to its high morbidity and mortality rates, it is urgent to find a molecular target that contributes to esophageal carcinogenesis and progression. In this research, we aimed to investigate the functions of Latent transforming growth factor ß binding protein 1(LTBP1) in ESCC progression and elucidate the underlying mechanisms. METHODS: The tandem mass tag-based quantitative proteomic approach was applied to screen the differentially expressed proteins (DEPs) between 3 cases of ESCC tumor samples and paired normal tissues. Then the DEPs were validated in human ESCC tissues using western blot assays and GEPIA database respectively. The expression level of LTBP1 was detected in 152 cases of ESCC tissues and paired normal tissues. Loss-of-function assays were performed to detect the function of LTBP1 in vivo and in vitro. Immunofluorescence and Western blot assays were used to detect the expression of apoptosis, epithelial-mesenchymal transition (EMT) and cancer-associated fibroblasts (CAFs) markers. RESULTS: A total of 39 proteins were screened to be up-regulated (ratio > 2.0) in all three ESCC tissues. The results of immunohistochemistry assays indicated that the expression level of LTBP1 was higher in ESCC tissues than that in paired normal tissues (p < 0.001). Overexpression of LTBP1 was positively associated with lymphatic metastasis in ESCC (p = 0.002). Down-regulation of LTBP1 inhibited the invasion and migration as well as metastatic abilities in vitro and in vivo. It was also observed the down-regulation of LTBP1 not only decreased the mesenchymal phenotypes but also inhibited TGFß-induced EMT in ESCC cells. We further found that down-regulation of LTBP1 enhanced ESCC cells' sensitivity to 5-FU treatment. Inhibition of LTBP1 expression could also attenuate induction of CAFs transformation and restrain fibroblast express fibronectin (FN1) in ESCC cells. CONCLUSION: Overexpression of LTBP1 was associated with lymph node metastasis in ESCC. Our results indicated that LTBP1 not only increased the malignant behaviors of ESCC cells but also induced EMT and CAFs transformation. Our studies suggested an oncogenic role of LTBP1 in ESCC progression and it may serve as a potential therapeutic target for ESCC patients.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Invasividade Neoplásica/genética , Proteômica
17.
J. appl. oral sci ; 28: e20200262, 2020. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1143145

RESUMO

Abstract Objective: This study aims to replicate the phenotype of Ltbp1 knockout mice in zebrafish, and to address the function of LTBP1 in craniofacial development. Methods: Whole mount in situ hybridization (WISH) of ltbp1 was performed at critical periods of zebrafish craniofacial development to explore the spatial-temporal expression pattern. Furthermore, we generated morpholino based knockdown model of ltbp1 to study the craniofacial phenotype. Results: WISH of ltbp1 was mainly detected in the mandibular jaw region, brain trunk, and internal organs such as pancreas and gallbladder. And ltbp1 colocalized with both sox9a and ckma in mandibular region. Morpholino based knockdown of ltbp1 results in severe jaw malformation. Alcian blue staining revealed severe deformity of Meckel's cartilage along with the absence of ceratobranchial. Three-dimension measurements of ltbp1 morphants jaws showed decrease in both mandible length and width and increase in open mouth distance. Expression of cartilage marker sox9a and muscle marker ckma was decreased in ltbp1 morphants. Conclusions: Our experiments found that ltbp1 was expressed in zebrafish mandibular jaw cartilages and the surrounding muscles. The ltbp1 knockdown zebrafish exhibited phenotypes consistent with Ltbp1 knockout mice. And loss of ltbp1 function lead to significant mandibular jaw defects and affect both jaw cartilages and surrounding muscles.


Assuntos
Animais , Peixe-Zebra , Proteínas de Ligação a TGF-beta Latente , Osso e Ossos , Hibridização In Situ
18.
Iran J Allergy Asthma Immunol ; 18(5): 473-478, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32245290

RESUMO

Sulfur mustard (SM) exposure injures different organs such as the lungs and leads to short and long term complications Transforming growth factor beta (TGF-ß) has the main role in altering fibroblast activities linked to airways remodeling. Latency TGF beta binding proteins 1 (LTBP1 facilitates localization of TGF-ß in the extracellular matrix. Mothers against decapentaplegic homolog 6 (Smad6) negatively regulates TGF-ß signaling, thus establishing a main negative feedback loop. In this study, we investigated the expression of LTBP1 and Smad6 in the lung tissues of SM-exposed and control individuals. Lung formalin-fixed paraffin-embedded (FFPE) blocks of SM-exposed (20 samples) and control groups (20 samples) were collected from archival pathology department of several general hospitals. The total mRNA of lung FFPE tissues was extracted. Quality of the extracted mRNA was evaluated by an Agilent Bio analyzer and RNA was quantified using a Nano Drop. LTBP1 and Smad6 expression levels were evaluated by real-time PCR. LTBP1 expression levels did not change between the two groups (p=0.626), howeverSmad6 expression levels were significantly higher (2.6 fold) in SM-exposed individuals compared to the control group (p=0.001). Our results revealed that Smad6 may be involved in lung tissue remodeling process in SM-exposed patients. Smad6 regulates fibrotic alterations in lung tissue and its function as negative feedback mechanisms in TGF-ß.


Assuntos
Substâncias para a Guerra Química/efeitos adversos , Expressão Gênica/genética , Proteínas de Ligação a TGF-beta Latente/genética , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Gás de Mostarda/efeitos adversos , Proteína Smad6/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Feminino , Fibroblastos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Lesão Pulmonar/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
19.
Onco Targets Ther ; 11: 1117-1120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535536

RESUMO

Fusion of the anaplastic lymphoma receptor tyrosine kinase gene (ALK) with the echinoderm microtubule-associated protein 4 gene (EML4) is the second most common actionable alteration in non-small-cell lung cancer, with a frequency of 5%. Here, we present a case of an EML4-ALK-positive patient with an atypical in-frame insertion from the LTBP1 gene in the canonical junction of variant 1. The patient was a 39-year-old never-smoker female diagnosed with Stage IV lung adenocarcinoma. A core biopsy was negative for EGFR and KRAS mutations but positive for ALK immunohistochemistry and fluorescence in situ hybridization. When submitted to nCounter, the sample showed a 3'/5' imbalance indicative of an ALK rearrangement, but failed to give a positive signal for any of the variants tested. Finally, a band with a molecular weight higher than expected appeared after reverse transcriptase-polymerase chain reaction analysis. When Sanger sequencing was performed, the band revealed an atypical EML4-ALK fusion gene with an in-frame 129 bp insertion. A 115 bp segment of the insertion corresponded to an intronic region of LTBP1, a gene located in the short arm of chromosome 2, between ALK and EML4. The patient received crizotinib and showed a good therapeutic response that is still ongoing after 12 months. Our result suggests that short in-frame insertions of other genes in the EML4-ALK junction do not affect the sensitivity of the EML4-ALK fusion protein to crizotinib.

20.
Autophagy ; 14(3): 465-486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29297744

RESUMO

TGFB1 (transforming growth factor beta 1) is a potent cytokine playing a driving role in development, fibrosis and cancer. It is synthesized as prodomain-growth factor complex that requires tethering to LTBP (latent transforming growth factor beta binding protein) for efficient secretion into the extracellular space. Upon release, this large latent complex is sequestered by anchorage to extracellular matrix (ECM) networks, from which the mature growth factor needs to be activated in order to reach its receptors and initiate signaling. Here, we uncovered a novel intracellular secretion pathway by which the latent TGFB1 complex reaches the plasma membrane and is released from fibroblasts, the key effector cells during tissue repair, fibrosis and in the tumor stroma. We show that secretion of latent TGFB1, but not of other selected cytokines or of bulk cargo, is regulated by fibroblast-ECM communication through ILK (integrin linked kinase) that restricts RHOA activity by interacting with ARHGAP26/GRAF1. Latent TGFB1 interacts with GORASP2/GRASP55 and is detected inside MAP1LC3-positive autophagosomal intermediates that are secreted by a RAB8A-dependent pathway. Interestingly, TGFB1 secretion is fully abrogated in human and murine fibroblasts and macrophages that lack key components of the autophagic machinery. Our data demonstrate an unconventional secretion mode of TGFB1 adding another level of control of its bioavailability and activity in order to effectively orchestrate cellular programs prone to dysregulation as seen in fibrosis and cancer.


Assuntos
Autofagia/fisiologia , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Fibrose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...